Copied to
clipboard

G = C24.13D6order 192 = 26·3

2nd non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.13D6, C23.37D12, C23.4Dic6, (C2×C6).1C42, C6.D46C4, (C22×C6).7Q8, C23.47(C4×S3), C22⋊C43Dic3, C6.15(C23⋊C4), (C22×Dic3)⋊3C4, (C22×C6).177D4, C32(C23.9D4), C22.1(C4×Dic3), C22.37(D6⋊C4), C23.22(C3⋊D4), (C23×C6).23C22, C22.1(C4⋊Dic3), C23.10(C2×Dic3), C6.4(C2.C42), C2.5(C6.C42), C22.2(Dic3⋊C4), C2.3(C23.6D6), C22.9(C6.D4), (C2×C6).2(C4⋊C4), (C3×C22⋊C4)⋊5C4, (C6×C22⋊C4).2C2, (C2×C22⋊C4).3S3, (C22×C6).29(C2×C4), (C2×C6).50(C22⋊C4), (C2×C6.D4).2C2, SmallGroup(192,86)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.13D6
C1C3C6C2×C6C22×C6C23×C6C2×C6.D4 — C24.13D6
C3C6C2×C6 — C24.13D6
C1C22C24C2×C22⋊C4

Generators and relations for C24.13D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=b, f2=abcd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=cde5 >

Subgroups: 408 in 142 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C6, C6, C6, C2×C4, C23, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C24, C2×Dic3, C2×C12, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C22×Dic3, C22×Dic3, C22×C12, C23×C6, C23.9D4, C2×C6.D4, C6×C22⋊C4, C24.13D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C23⋊C4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C23.9D4, C23.6D6, C6.C42, C24.13D6

Smallest permutation representation of C24.13D6
On 48 points
Generators in S48
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(25 45)(26 46)(27 47)(28 48)(29 37)(30 38)(31 39)(32 40)(33 41)(34 42)(35 43)(36 44)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 28)(2 19)(3 30)(4 21)(5 32)(6 23)(7 34)(8 13)(9 36)(10 15)(11 26)(12 17)(14 38)(16 40)(18 42)(20 44)(22 46)(24 48)(25 39)(27 41)(29 43)(31 45)(33 47)(35 37)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 37)(9 38)(10 39)(11 40)(12 41)(13 35)(14 36)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 9)(2 29 43 19)(3 48)(4 17 45 27)(6 25 47 15)(7 44)(8 13 37 35)(10 33 39 23)(11 40)(12 21 41 31)(14 28)(18 36)(20 24)(22 32)(30 34)(38 42)

G:=sub<Sym(48)| (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,28)(2,19)(3,30)(4,21)(5,32)(6,23)(7,34)(8,13)(9,36)(10,15)(11,26)(12,17)(14,38)(16,40)(18,42)(20,44)(22,46)(24,48)(25,39)(27,41)(29,43)(31,45)(33,47)(35,37), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,29,43,19)(3,48)(4,17,45,27)(6,25,47,15)(7,44)(8,13,37,35)(10,33,39,23)(11,40)(12,21,41,31)(14,28)(18,36)(20,24)(22,32)(30,34)(38,42)>;

G:=Group( (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,28)(2,19)(3,30)(4,21)(5,32)(6,23)(7,34)(8,13)(9,36)(10,15)(11,26)(12,17)(14,38)(16,40)(18,42)(20,44)(22,46)(24,48)(25,39)(27,41)(29,43)(31,45)(33,47)(35,37), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,29,43,19)(3,48)(4,17,45,27)(6,25,47,15)(7,44)(8,13,37,35)(10,33,39,23)(11,40)(12,21,41,31)(14,28)(18,36)(20,24)(22,32)(30,34)(38,42) );

G=PermutationGroup([[(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(25,45),(26,46),(27,47),(28,48),(29,37),(30,38),(31,39),(32,40),(33,41),(34,42),(35,43),(36,44)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,28),(2,19),(3,30),(4,21),(5,32),(6,23),(7,34),(8,13),(9,36),(10,15),(11,26),(12,17),(14,38),(16,40),(18,42),(20,44),(22,46),(24,48),(25,39),(27,41),(29,43),(31,45),(33,47),(35,37)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,37),(9,38),(10,39),(11,40),(12,41),(13,35),(14,36),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,9),(2,29,43,19),(3,48),(4,17,45,27),(6,25,47,15),(7,44),(8,13,37,35),(10,33,39,23),(11,40),(12,21,41,31),(14,28),(18,36),(20,24),(22,32),(30,34),(38,42)]])

42 conjugacy classes

class 1 2A2B2C2D···2I 3 4A4B4C4D4E···4L6A···6G6H6I6J6K12A···12H
order12222···2344444···46···6666612···12
size11112···22444412···122···244444···4

42 irreducible representations

dim11111122222222244
type+++++--+-++
imageC1C2C2C4C4C4S3D4Q8Dic3D6Dic6C4×S3D12C3⋊D4C23⋊C4C23.6D6
kernelC24.13D6C2×C6.D4C6×C22⋊C4C6.D4C3×C22⋊C4C22×Dic3C2×C22⋊C4C22×C6C22×C6C22⋊C4C24C23C23C23C23C6C2
# reps12144413121242424

Matrix representation of C24.13D6 in GL6(𝔽13)

1200000
0120000
001000
000100
000010
000001
,
1200000
0120000
0012200
000100
0005125
000001
,
1200000
0120000
0011100
0001200
0058125
000001
,
100000
010000
0012000
0001200
0000120
0000012
,
1030000
1070000
0012030
000001
008510
000100
,
550000
080000
0012000
0012100
0000125
0010101

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,2,1,5,0,0,0,0,0,12,0,0,0,0,0,5,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,5,0,0,0,11,12,8,0,0,0,0,0,12,0,0,0,0,0,5,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[10,10,0,0,0,0,3,7,0,0,0,0,0,0,12,0,8,0,0,0,0,0,5,1,0,0,3,0,1,0,0,0,0,1,0,0],[5,0,0,0,0,0,5,8,0,0,0,0,0,0,12,12,0,1,0,0,0,1,0,0,0,0,0,0,12,10,0,0,0,0,5,1] >;

C24.13D6 in GAP, Magma, Sage, TeX

C_2^4._{13}D_6
% in TeX

G:=Group("C2^4.13D6");
// GroupNames label

G:=SmallGroup(192,86);
// by ID

G=gap.SmallGroup(192,86);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,1123,851,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=b,f^2=a*b*c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^5>;
// generators/relations

׿
×
𝔽